Antioxidant Systems are Regulated by Nitric Oxide-Mediated Post-translational Modifications (NO-PTMs)
نویسندگان
چکیده
Nitric oxide (NO) is a biological messenger that orchestrates a plethora of plant functions, mainly through post-translational modifications (PTMs) such as S-nitrosylation or tyrosine nitration. In plants, hundreds of proteins have been identified as potential targets of these NO-PTMs under physiological and stress conditions indicating the relevance of NO in plant-signaling mechanisms. Among these NO protein targets, there are different antioxidant enzymes involved in the control of reactive oxygen species (ROS), such as H2O2, which is also a signal molecule. This highlights the close relationship between ROS/NO signaling pathways. The major plant antioxidant enzymes, including catalase, superoxide dismutases (SODs) peroxiredoxins (Prx) and all the enzymatic components of the ascorbate-glutathione (Asa-GSH) cycle, have been shown to be modulated to different degrees by NO-PTMs. This mini-review will update the recent knowledge concerning the interaction of NO with these antioxidant enzymes, with a special focus on the components of the Asa-GSH cycle and their physiological relevance.
منابع مشابه
Thioredoxin 1-mediated post-translational modifications: reduction, transnitrosylation, denitrosylation, and related proteomics methodologies.
Despite the significance of redox post-translational modifications (PTMs) in regulating diverse signal transduction pathways, the enzymatic systems that catalyze reversible and specific oxidative or reductive modifications have yet to be firmly established. Thioredoxin 1 (Trx1) is a conserved antioxidant protein that is well known for its disulfide reductase activity. Interestingly, Trx1 is als...
متن کاملMarkov chain Monte Carlo based analysis of post-translationally modified VDAC gating kinetics
The voltage-dependent anion channel (VDAC) is the main conduit for permeation of solutes (including nucleotides and metabolites) of up to 5 kDa across the mitochondrial outer membrane (MOM). Recent studies suggest that VDAC activity is regulated via post-translational modifications (PTMs). Yet the nature and effect of these modifications is not understood. Herein, single channel currents of wil...
متن کاملPost-translational Modifications in Regulation of Chloroplast Function: Recent Advances
Post-translational modifications (PTMs) of proteins enable fast modulation of protein function in response to metabolic and environmental changes. Phosphorylation is known to play a major role in regulating distribution of light energy between the Photosystems (PS) I and II (state transitions) and in PSII repair cycle. In addition, thioredoxin-mediated redox regulation of Calvin cycle enzymes h...
متن کاملOxidative post-translational modifications of cysteine residues in plant signal transduction.
In plants, fluctuation of the redox balance by altered levels of reactive oxygen species (ROS) can affect many aspects of cellular physiology. ROS homeostasis is governed by a diversified set of antioxidant systems. Perturbation of this homeostasis leads to transient or permanent changes in the redox status and is exploited by plants in different stress signalling mechanisms. Understanding how ...
متن کاملTranscriptional regulation by complex interplay between post-translational modifications.
Transcriptional reprogramming in response to developmental changes or environmental inputs is regulated by a wide variety of transcription factors and cofactors. In plants, the stability of many transcriptional regulators is mediated by the ubiquitin-mediated proteasome. Recent reports suggest that additional post-translational modifications modulate the ubiquitination and thus stability of tra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Frontiers in plant science
دوره 7 شماره
صفحات -
تاریخ انتشار 2016